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Abstract

Seismic Interferometry is a relative new branch of
Seismic and Seismology. Despite the start with
paper of Claerbout (1968), it was only during the
late nineties that the use of Seismic Interferometry
start continuously increasing in Seismic. One of the
most promising use of this technique is the ability
to create new positions of sources and receivers
by crosscorrelating the seismic wavefield recorded.
To understand the physical meaning of Seismic
Interferometry we study one of its fundamental
equations by means of the Stationary Phase method,
in a very simple geometry: a flat dip reflector.

Introduction

In a not rigorous definition it is possible to define
Seismic Interferometry as a variety of methods used to
create virtual seismograms, never physically recorded.
These virtual seismograms are created only through
mathematical operations, which include crosscorrelating,
convolution, deconvolution and summation of actually
recorded wavefields, Galetti and Curtis (2012). One of
the most interesting applications of interferometric methods
is the ability to produce artificially traces in positions
of sources or receivers that are not possible to be
located. With this capacity, at least in principle, it is
possible to fill gaps in seismic acquisition (Interferometric
Interpolation, Wang et al. (2009)). This possibility is a direct
consequence of the nature of physical process behind
Seismic Interferometry, which is clarified by Stationary
Phase method.

Seismic Interferometry

The retrieval of the Green’s Function, or the response of a
given media when excited by an impulsive source, is made
with interferometric reciprocity equation of correlation type
by equation 1 (Wapenaar, 2004; Schuster, 2009), given by

ℑĜ(xB,ω;xA) =−ω©
∫
ε

∫ 1
c(x)

Ĝ(xA,ω;x)Ĝ∗(xB,ω;x)dS, (1)

where ℑ denotes the imaginary part, Ĝ(xB,ω;xA) is the
Fourier Transform of the Green’s Functions for a source at
xA, evaluated at a receiver at xB, and ω is the frequency,
Ĝ∗ is its complex conjugate, x, the variable of integration,

represents source positions over the surface ε, dS is the
element of area, and c(x) is the velocity. The positions
xA and xB, where the Green’s Functions is computed are
located inside the volume bounded by surface ε. All those
elements are sketched on Figure 1.
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Figure 1: In the figure the rays represent the full responses
between the source and receivers points, including primary
and multiples due to inhomogeneities inside and outside
volume (based on Wapenaar and Fokkema (2006)).

By means of equation (1), a primary reflection from xA
to xB can be obtained by crosscorrelating multiple and
primary reflections acquired in the field. This is illustrated
through a ray diagram, in marine seismic, in the figure
below. In this specific example the dominant arrivals are
assumed to be the reflection primaries and free-surface
first order multiples. The direct arrivals are muted in
the data, an easy task in depth marine seismic. The
Green’s function can be approximated as a sum of specular
primary reflection and first order multiple reflection. The
crosscorrelation of primaries and primaries or multiples
and multiples do not contribute significantly, because as
we shall see the stationary contributions of these terms
is zero. For a constant velocity overburden, c(x) = v, the
Green’s Function accounting only for primaries and first
order multiples is asymptotically approximated by

Ĝ(xM ,ω;x)≈

Primary︷ ︸︸ ︷
rM

exp(−iωTxxM )

4π vTxxM

+

Multiple︷ ︸︸ ︷
r′M

exp(−iωTT xxM )

4π vTT xxM

, (2)

where rM and r′M are the reflection coefficients associated
to the primary and multiple reflections, the traveltimes
for specular primary reflection and first order free-surface
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Figure 2: Diagram of crosscorrelating primaries and
multiples from a dipping reflector, modified from Wang et al.
(2009). The cross correlation of a primary and a first order
multiple results in an interferometric trace.

multiple are TxxM and TT xxM , respectively, for source in x,
and receiver in xM at marine surface.

Replacing the expression for Green’s Function of equation
2 into 1,

ℑĜ(xB,ω;xA)≈

−ω

v
rMr′M

∫
S0

exp{−iω (TT xxB −TxxA)}
(4π)2TT xxB TxxA

dS+O.T., (3)

where O.T. stands for higher order terms, called virtual
multiples or cross talk, and will be attenuated in the final
image for a sufficient large integration’s aperture. A last
approximation made in equation 3 was to consider that the
integral over S∞ vanishes as its ray goes to infinity. The
Figure 3 shows the geometry for this integral.
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Figure 3: Geometry and surface of integration of equation
3, based on Schuster (2009).

Since the integrand in equation 3 has an oscillatory
character the integral can be asymptotically estimated by
the Stationary Phase method (Bleistein, 1984).

Stationary Phase

The stationary phase method is a method to obtain an
asymptotically approximation for integral with an oscillatory

term of the form

I =
∫

∞

−∞

F(x)eiωφ(x) dx, (4)

where φ is a rapid varying function of x over most range of
integration, and F is a slowly waring function of x. Such
kind of integrals frequently arise in radiation and scattering
problems. Due to the rapid variation of exponential term the
integral is approximately zero over all ranges of ω, except
at regions where φ ′(x)≈ 0. Each x∗ such that φ ′(x∗) = 0, is
called an stationary point of φ . Bleistein (1984) shows that
I can be fairly approximated as

I ∼

√
2π

ω|φ ′′(x∗)|
F(x∗)e(iωφ(x∗)+iωπ/4). (5)

This formula says that dominant contribution to the integral
comes from point(s) where phase is stationary.

Stationary Phase method in a Presence of a Dipping
Reflector

The use Stationary Phase method to interpret the Seismic
Interferometric results in the case of horizontal reflectors
was done by Snieder (2004), Snieder et al. (2006), and
recently by Draganov et al. (2012).

Following the same strategy, we also employ the Stationary
Phase method to investigate if, in the presence of a dipping
reflector in a medium of constant velocity, the seismic
interferometric interpolation can be useful to create virtual
traces.

In our case, the phase function φ(x) = TT (x,xB)− T (x,xA),
where x, xA, and xB are the horizontal coordinate of points
x, xA, and xB, respectively, since we are only dealing with
2D acquisition lines. Note that both traveltimes are from
source at x. Therefore, it would be more suitable to work
with traveltime formulas for common shot configurations.

For primary reflections traveltime we will use an expression
similar to the one presented on Sheriff and Geldart (1995),
pp. 87. To simplify the notation use Tx,h to represent the
traveltime of a primary reflection from a source at x to a
receiver at 2h ahead.

Tx,h = T0(x)

√
1+

h2 +2hd(x)sinα

d2(x)
, (6)

where T0(x) is the traveltime of the zero-offset reflection
from the source in x, h is the half-offset, d1(x) is normal
distance from the source to the reflector, α is the dip angle.
The zero-offset travelime and normal distance vary with x
as

T0(x) =
2z(x)cosα

v
(7)

and
d(x) = z(x)cosα, (8)

where z(x) is the depth of the dip reflector at x

z(x) = z0 +(x− x0) tanα, (9)

form some fixed point (x0,z0) over the reflector (see Fig. 4).

The traveltime of a multiple reflection, in such geometry, is
equal to the traveltime of a primary reflection at a double dip
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reflector. Therefore, the same expressions just presented
by the primary-reflection traveltime can be recasted for the
multiple-reflection traveltime:

TT x,h = T̂0(X)

√
1+

h2 +2hd̂(x)sin2α

d̂2(x)
, (10)

where

T̂0(x) =
2ẑ(x)cos2α

v
, (11)

and
d̂(x) = ẑ(x)cos2α, (12)

where ẑ(x) is the depth of the virtual double-dip reflector

ẑ(x) = ẑ0 +(x− x0) tan2α, (13)

with ẑ0 = z0(cos2α + sin2α tan2α).
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Figure 4: Geometry for the primary and multiple events in
Equations 6 and 13.

From equation (3), the function φ , for the stationary phase
method, is given by

φ(x) = TT x,h−Tx,h. (14)

To find the stationary points, representing the sources that
contribute most to the integral 3, we just have to solve the
equation

dφ(x)
dx

= 0. (15)

Results

It is not possible to solve the expression in equation
15 analytically. However, it is fairly simple to solve
it numerically. We present two tests simulating a 2D
acquisition line, one for shallow water and another for
deeper water. The example with shallow water one
receiver, xA, is located above 200 m of a flat reflector with
10◦ dip. The other receiver, xB, is located at a distance
of 1000 m of the first one, xA, downdip. For this two
receivers there is only one stationary point x∗ at a distance
of 292.76 m in shallow water of xA. Figure 5 shows the
situation.

The second example is a deep water environment with
xA located above 1000 m of the same 10◦ dip reflector.
The other receiver, xB, is locate at the same distance
of the first one (separation of 1000 m). Again, for this
configuration there is only one stationary point x∗ at a
distance of 161.34 m of xA (see Fig. 6).
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Figure 5: In this shallow water example one receptor is
located at 200 m above a dip reflector (10◦ dip). The
stationary point is 292.76 m of xA. The distance between
xA and xB is 1000 m.
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Figure 6: In deep water, one receptor is locate at 1000 m
above the same flat dip reflector. The stationary point is
only 161.34 m of xA, updip direction.

To investigate how the stationary point moves as the
distance of xA and xB varies, we present to further results
in figures 7 and 8. The horizontal axis is the distance
that separates xA and xB. xA was kept fixed, while xB
was shifted from xA position up to 12 km, downdip. The
vertical axis is the relative position of the stationary point
to the xA receiver, (x∗−xA), i.e., negative values stand for a
stationary points at right of xA, while positive values stand
for stationary points at left of xA.

In the deep water we can observe, for some stationary
points between the positions of the two receptors (points
above the horizontal line in Figure 8).

Conclusions

From the experiments we have made, we can observe
that in the shallow water situation the range of practical
applicability of the Seismic interferometric approximation
for primary reflection traces is limited. From Figure 7 we
see that to simulate traces with small offsets it would be
necessary sources too near to xA, which is in principle a
location where no source was fired. Furthermore, in typical
range of offsets for shallow water, let say from 250 m up
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Figure 7: Relative position of the stationary point in the
shallow water case.
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Figure 8: Relative position of the stationary point in the
deep water case.

to 4 km, the same figure shows that the stationary points
cover a narrow interval from xA up to around 450 m to xA,
downdip. The red strip in the figure indicates the range of
offsets between sources and xA which are not present in
the data. In the usual acquisition geometry this means at
most 11 shot points, with 25 m between consecutive shots,
would be available. The first trace feasible to be recovered
by interferometric formula 3 is the one with offset 775 m.

In the case of deep water, from Figure 8, we see that the
range of positions for stationary points is more favorable,
varying from 250 m up to 1930 m, for very long cables.
In this range, there is typically 67 shots. Note also, that
in this scenario, for small offset it would be necessary
sources between the receivers in xA and xB, which is
highly uncommon to happen in an end-on conventional
acquisition geometry. Again, the red strip in the figure
indicates the range of offsets between sources and xA
which are not present in the data. The first trace feasible
to be recovered by interferometric formula 3 is the one with
offset 1130 m.

Using stationary-phase method’s approach and with the

simple geometry of a dip reflector, we were able to
investigate what are the spatial conditions to create new
sources with Seismic Interferometry. It should also be
investigated the dependence on the dip angle.
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